# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 6-Methyl-2,3,4,9-tetrahydro-1H-carbazole-1-thione

# R. Archana,<sup>a</sup> K. Prabakaran,<sup>b</sup> K. J. Rajendra Prasad,<sup>b</sup> A. Thiruvalluvar<sup>a</sup>\* and R. J. Butcher<sup>c</sup>

<sup>a</sup>PG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thaniavur 613 005, Tamilnadu, India, <sup>b</sup>Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and <sup>c</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 17 May 2011; accepted 20 May 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.045; wR factor = 0.133; data-to-parameter ratio = 14.5.

In the title molecule,  $C_{13}H_{13}NS$ , the dihedral angle between the benzene ring and the fused pyrrole ring is  $0.71 (8)^{\circ}$  and the cyclohexene ring is in an envelope form. The  $(CH_2)_3$  atoms of the cyclohexene ring are disordered over two positions; the site-occupancy factor for the major component refined to 0.862 (4). In the crystal, intermolecular  $N-H \cdots S$  hydrogen bonds lead to the formation of centrosymmetric aggregates via an  $R_2^2(10)$  ring.

#### **Related literature**

For the synthesis of fused carbazole nuclei, see: Pelly et al. (2005). For heterocycle-annulated tetra-, penta- and hexacyclic carbazole derivatives, see: Chattopadhyay et al. (2006). For the preparation of 1-oxo compounds via their corresponding hydrazones, see: Rajendra Prasad & Vijayalakshmi (1994). For related structures, see: Archana et al. (2010); Thomas Gunaseelan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).



#### **Experimental**

Crystal data C13H13NS  $M_r = 215.31$ 

Triclinic, P1 a = 7.0846 (4) Å

| b = 9.5287 (7) A                 |  |
|----------------------------------|--|
| c = 9.6384 (6) Å                 |  |
| $\alpha = 115.009 \ (7)^{\circ}$ |  |
| $\beta = 104.901 \ (6)^{\circ}$  |  |
| $\gamma = 98.074 \ (6)^{\circ}$  |  |
| V = 546.28 (8) Å <sup>3</sup>    |  |

#### Data collection

| Oxford Diffraction Xcalibur Ruby     | 3471 measured reflections              |
|--------------------------------------|----------------------------------------|
| Gemini diffractometer                | 2102 independent reflections           |
| Absorption correction: multi-scan    | 1924 reflections with $I > 2\sigma(I)$ |
| (CrysAlis PRO; Oxford                | $R_{\rm int} = 0.022$                  |
| Diffraction, 2010)                   |                                        |
| $T_{\min} = 0.609, T_{\max} = 1.000$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.045$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.133$               | independent and constrained                                |
| S = 1.06                        | refinement                                                 |
| 2102 reflections                | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 145 parameters                  | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |
| 3 restraints                    |                                                            |

Z = 2

Cu  $K\alpha$  radiation

 $0.46 \times 0.28 \times 0.21 \text{ mm}$ 

 $\mu = 2.31 \text{ mm}^{-1}$ 

T = 295 K

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H            | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $N9-H9\cdots S1^{i}$        | 0.86 (2)       | 2.77 (3)                | 3.4955 (15)  | 143 (2)                              |
| Symmetry code: (i)          | -x + 2 - v - 7 |                         |              |                                      |

nmetry code: (i) -x + 2, -y, -z

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2746).

#### References

- Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2299-o2300.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Chattopadhyay, S. K., Roy, S. P., Ghosh, D. & Biswas, G. (2006). Tetrahedron Lett. 47. 6895-6898.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Pelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474-10481.
- Rajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. Sect. B, 33, 481-482.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thomas Gunaseelan, A., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1946-o1947.

supplementary materials

Acta Cryst. (2011). E67, o1642 [doi:10.1107/S1600536811019246]

## 6-Methyl-2,3,4,9-tetrahydro-1*H*-carbazole-1-thione

## R. Archana, K. Prabakaran, K. J. Rajendra Prasad, A. Thiruvalluvar and R. J. Butcher

#### Comment

The development of methods for the synthesis of fused carbazole nuclei is becoming increasingly important as a result of the number of natural and synthetic carbazoles that display biological activity (Pelly *et al.*, 2005). Heterocycle-annulated tetra-, penta- and hexa-cyclic carbazole derivatives have been developed using successive applications of three atom economic processes, *viz.*, Claisen rearrangement, olefin metathesis and Diels-Alder reactions (Chattopadhyay *et al.*, 2006). The preparation of 1-oxo compounds *via* their corresponding hydrazones has been reported (Rajendra Prasad & Vijayalakshmi, 1994). Archana *et al.* (2010) and Thomas Gunaseelan *et al.* (2009) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar.

In the title molecule, Fig. 1, the dihedral angle between the benzene ring and the fused pyrrole ring is 0.71 (8) °. The cyclohexene ring is in envelope form. Three C atoms (C2A, C3A, C4A) of the cyclohexene ring, with their attached H atoms are disordered over two positions; the site-occupancy factors are *ca* 0.86 and 0.14. Intermolecular N—H···S hydrogen bonds form a  $R^2_2(10)$  (Bernstein *et al.*, 1995) ring in the crystal structure (Table 1 & Fig. 2).

#### **Experimental**

A mixture of 6-methyl-2,3,4,9-tetrahydro-1*H*-carbazol-1-one (0.199 g, 0.001 mol) and Lawesson's reagent (0.404 g, 0.001 mol) was refluxed in pyridine on an oil bath pre-heated to 383 K for 6 h. The contents were poured onto cold water and neutralized using 1:1 HCl, filtered and dried. The product was recrystallized from ethanol. The yield was 0.154 g (72%).

#### Refinement

Atoms C2A, C3A, C4A of the cyclohexene ring, with attached hydrogen atoms are disordered over two positions; the site occupancy factors refined to 0.862 (4) and 0.138 (4). The N9-H atom was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and  $U_{iso}(H) = xU_{eq}$ (parent atom), where x = 1.5 for methyl and 1.2 for all other carbon-bound H atoms. A damping factor (damp 200 15 in the final refinement cycles) was applied to avoid large and erratic displacements of the hydrogen atoms of the less occupied C atoms.

#### **Figures**

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. Fig. 2. Unit cell contents for (I), viewed down the *a* axis, showing the formation of a  $R^2_2(10)$ ring.

## 6-Methyl-2,3,4,9-tetrahydro-1H-carbazole-1-thione

| Crystal data                       |                                                |
|------------------------------------|------------------------------------------------|
| C <sub>13</sub> H <sub>13</sub> NS | Z = 2                                          |
| $M_r = 215.31$                     | F(000) = 228                                   |
| Triclinic, <i>P</i> T              | $D_{\rm x} = 1.309 {\rm ~Mg} {\rm ~m}^{-3}$    |
| Hall symbol: -P 1                  | Melting point: 356 K                           |
| a = 7.0846 (4) Å                   | Cu K $\alpha$ radiation, $\lambda = 1.54184$ Å |
| b = 9.5287 (7)  Å                  | Cell parameters from 2595 reflections          |
| c = 9.6384 (6) Å                   | $\theta = 5.3-72.6^{\circ}$                    |
| $\alpha = 115.009 \ (7)^{\circ}$   | $\mu = 2.31 \text{ mm}^{-1}$                   |
| $\beta = 104.901 \ (6)^{\circ}$    | T = 295  K                                     |
| $\gamma = 98.074 \ (6)^{\circ}$    | Chunk, orange                                  |
| $V = 546.28 (8) \text{ Å}^3$       | $0.46 \times 0.28 \times 0.21 \text{ mm}$      |
|                                    |                                                |

#### Data collection

Oxford Diffraction Xcalibur Ruby Gemini<br/>diffractometer2102 inRadiation source: Enhance (Cu) X-ray Source1924 ray<br/>graphitegraphite $R_{int} = 0$ Detector resolution: 10.5081 pixels mm<sup>-1</sup> $\theta_{max} =$ <br/> $\omega$  scansh = -7-<br/>Absorption correction: multi-scan<br/>(CrysAlis PRO; Oxford Diffraction, 2010)k = -11<br/>l = -9-<br/>3471 measured reflections

#### Refinement

| Refinement on $F^2$        |  |
|----------------------------|--|
| Least-squares matrix: full |  |

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 

 $wR(F^2) = 0.133$ 

S = 1.06

2102 reflections

145 parameters

3 restraints

2102 independent reflections 1924 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.022$   $\theta_{max} = 72.8^{\circ}, \theta_{min} = 5.3^{\circ}$   $h = -7 \rightarrow 8$   $k = -11 \rightarrow 11$  $l = -9 \rightarrow 11$ 

| Primary atom site location: structure-invariant direct methods         |
|------------------------------------------------------------------------|
| Secondary atom site location: difference Fourier map                   |
| Hydrogen site location: inferred from neighbouring sites               |
| H atoms treated by a mixture of independent and constrained refinement |
| $w = 1/[\sigma^2(F_0^2) + (0.0834P)^2 + 0.089P]$                       |
| where $P = (F_0^2 + 2F_c^2)/3$                                         |
| $(\Delta/\sigma)_{\rm max} = 0.001$                                    |
| $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$                    |
| $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$             |

### Special details

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      |              | 1 1           | 1 1          | 1 ( )                         |           |
|------|--------------|---------------|--------------|-------------------------------|-----------|
|      | x            | у             | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
| S1   | 1.12016 (7)  | 0.28362 (5)   | 0.07548 (6)  | 0.0567(1)                     |           |
| N9   | 0.79545 (19) | 0.08614 (14)  | 0.14611 (15) | 0.0412 (3)                    |           |
| C1   | 0.9615 (3)   | 0.34787 (18)  | 0.16910 (19) | 0.0438 (4)                    |           |
| C2A  | 0.9571 (3)   | 0.5227 (2)    | 0.2371 (3)   | 0.0611 (6)                    | 0.862 (4) |
| C3A  | 0.7579 (4)   | 0.5495 (2)    | 0.2548 (3)   | 0.0590 (7)                    | 0.862 (4) |
| C4A  | 0.6807 (3)   | 0.47256 (19)  | 0.3468 (2)   | 0.0531 (5)                    | 0.862 (4) |
| C4C  | 0.6904 (3)   | 0.30147 (17)  | 0.27848 (18) | 0.0421 (4)                    |           |
| C4D  | 0.5783 (2)   | 0.16637 (17)  | 0.27860 (17) | 0.0396 (4)                    |           |
| C5   | 0.4231 (3)   | 0.14228 (19)  | 0.33927 (19) | 0.0443 (4)                    |           |
| C6   | 0.3399 (2)   | -0.00860 (19) | 0.31681 (18) | 0.0430 (4)                    |           |
| C7   | 0.4130 (2)   | -0.13824 (18) | 0.23121 (19) | 0.0444 (4)                    |           |
| C8   | 0.5640 (2)   | -0.12039 (18) | 0.16959 (19) | 0.0426 (4)                    |           |
| C8A  | 0.6473 (2)   | 0.03337 (17)  | 0.19299 (17) | 0.0382 (4)                    |           |
| C9A  | 0.8222 (2)   | 0.24863 (17)  | 0.19625 (18) | 0.0406 (4)                    |           |
| C16  | 0.1720 (3)   | -0.0386 (2)   | 0.3790 (2)   | 0.0530 (5)                    |           |
| C4B  | 0.6807 (3)   | 0.47256 (19)  | 0.3468 (2)   | 0.0531 (5)                    | 0.138 (4) |
| C3B  | 0.855 (2)    | 0.5809 (14)   | 0.3534 (18)  | 0.0590 (7)                    | 0.138 (4) |
| C2B  | 0.9571 (3)   | 0.5227 (2)    | 0.2371 (3)   | 0.0611 (6)                    | 0.138 (4) |
| H3A  | 0.65603      | 0.50556       | 0.14672      | 0.0708*                       | 0.862 (4) |
| H2B  | 0.98737      | 0.56293       | 0.16579      | 0.0733*                       | 0.862 (4) |
| H4B  | 0.54131      | 0.47484       | 0.33584      | 0.0637*                       | 0.862 (4) |
| H3B  | 0.77491      | 0.66471       | 0.31193      | 0.0708*                       | 0.862 (4) |
| H4A  | 0.76376      | 0.53281       | 0.46218      | 0.0637*                       | 0.862 (4) |
| H8   | 0.60931      | -0.20752      | 0.11426      | 0.0512*                       |           |
| Н9   | 0.856 (3)    | 0.029 (3)     | 0.086 (2)    | 0.050 (5)*                    |           |
| H16A | 0.14149      | 0.06091       | 0.43500      | 0.0795*                       |           |
| H16B | 0.21516      | -0.08010      | 0.45319      | 0.0795*                       |           |
| H16C | 0.05241      | -0.11568      | 0.28852      | 0.0795*                       |           |
| Н5   | 0.37662      | 0.22852       | 0.39473      | 0.0531*                       |           |
| H7   | 0.35612      | -0.24001      | 0.21612      | 0.0532*                       |           |
| H2A  | 1.06434      | 0.58601       | 0.34358      | 0.0733*                       | 0.862 (4) |
| H2C  | 1.09697      | 0.59042       | 0.28888      | 0.0733*                       | 0.138 (4) |
| H2D  | 0.89345      | 0.53906       | 0.14537      | 0.0733*                       | 0.138 (4) |
| H3C  | 0.80970      | 0.66932       | 0.34463      | 0.0708*                       | 0.138 (4) |
|      |              |               |              |                               |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H3D | 0.95675 | 0.62673 | 0.46174 | 0.0708* | 0.138 (4) |
|-----|---------|---------|---------|---------|-----------|
| H4C | 0.55597 | 0.47686 | 0.27954 | 0.0637* | 0.138 (4) |
| H4D | 0.67683 | 0.50937 | 0.45626 | 0.0637* | 0.138 (4) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

| $U^{11}$    | $U^{22}$                                                                                                                                                                                                                                                                                  | $U^{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $U^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $U^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $U^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0577 (2)  | 0.0544 (2)                                                                                                                                                                                                                                                                                | 0.0691 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0166 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0349 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0319 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0486 (6)  | 0.0350 (6)                                                                                                                                                                                                                                                                                | 0.0475 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0156 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0246 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0209 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0476 (8)  | 0.0392 (7)                                                                                                                                                                                                                                                                                | 0.0458 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0084 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0155 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0232 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0759 (11) | 0.0386 (8)                                                                                                                                                                                                                                                                                | 0.0776 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0143 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0367 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0307 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0760 (14) | 0.0372 (8)                                                                                                                                                                                                                                                                                | 0.0728 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0214 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0301 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0304 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0659 (10) | 0.0342 (7)                                                                                                                                                                                                                                                                                | 0.0616 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0190 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0300 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0194 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0506 (8)  | 0.0340 (7)                                                                                                                                                                                                                                                                                | 0.0432 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0125 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0184 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0187 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0474 (7)  | 0.0338 (6)                                                                                                                                                                                                                                                                                | 0.0402 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0132 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0179 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0180 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0517 (8)  | 0.0407 (7)                                                                                                                                                                                                                                                                                | 0.0453 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0181 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0239 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0194 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0440 (7)  | 0.0451 (7)                                                                                                                                                                                                                                                                                | 0.0416 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0178 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0211 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0493 (8)  | 0.0363 (7)                                                                                                                                                                                                                                                                                | 0.0497 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0093 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0188 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0226 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0504 (8)  | 0.0342 (6)                                                                                                                                                                                                                                                                                | 0.0468 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0147 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0206 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0197 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0439 (7)  | 0.0347 (6)                                                                                                                                                                                                                                                                                | 0.0389 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0132 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0167 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0183 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0481 (8)  | 0.0339 (6)                                                                                                                                                                                                                                                                                | 0.0426 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0119 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0174 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0200 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0521 (9)  | 0.0552 (9)                                                                                                                                                                                                                                                                                | 0.0545 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0109 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0256 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0262 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0659 (10) | 0.0342 (7)                                                                                                                                                                                                                                                                                | 0.0616 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0190 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0300 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0194 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0760 (14) | 0.0372 (8)                                                                                                                                                                                                                                                                                | 0.0728 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0214 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0301 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0304 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0759 (11) | 0.0386 (8)                                                                                                                                                                                                                                                                                | 0.0776 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0143 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0367 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0307 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | $U^{11}$<br>0.0577 (2)<br>0.0486 (6)<br>0.0476 (8)<br>0.0759 (11)<br>0.0760 (14)<br>0.0659 (10)<br>0.0506 (8)<br>0.0474 (7)<br>0.0517 (8)<br>0.0440 (7)<br>0.0493 (8)<br>0.0504 (8)<br>0.0504 (8)<br>0.05439 (7)<br>0.0481 (8)<br>0.0521 (9)<br>0.0659 (10)<br>0.0760 (14)<br>0.0759 (11) | $U^{11}$ $U^{22}$ $0.0577$ (2) $0.0544$ (2) $0.0486$ (6) $0.0350$ (6) $0.0476$ (8) $0.0392$ (7) $0.0759$ (11) $0.0386$ (8) $0.0760$ (14) $0.0372$ (8) $0.0659$ (10) $0.0342$ (7) $0.0506$ (8) $0.0340$ (7) $0.0474$ (7) $0.0338$ (6) $0.0517$ (8) $0.0407$ (7) $0.0440$ (7) $0.0451$ (7) $0.05948$ $0.0342$ (6) $0.0439$ (7) $0.0347$ (6) $0.0481$ (8) $0.0339$ (6) $0.0521$ (9) $0.0552$ (9) $0.0659$ (10) $0.0342$ (7) $0.0760$ (14) $0.0372$ (8) $0.0759$ (11) $0.0386$ (8) | $U^{11}$ $U^{22}$ $U^{33}$ $0.0577(2)$ $0.0544(2)$ $0.0691(3)$ $0.0486(6)$ $0.0350(6)$ $0.0475(6)$ $0.0476(8)$ $0.0392(7)$ $0.0458(7)$ $0.0759(11)$ $0.0386(8)$ $0.0776(11)$ $0.0760(14)$ $0.0372(8)$ $0.0728(13)$ $0.0659(10)$ $0.0342(7)$ $0.0616(9)$ $0.0506(8)$ $0.0340(7)$ $0.0432(7)$ $0.0474(7)$ $0.0338(6)$ $0.0402(6)$ $0.0517(8)$ $0.0407(7)$ $0.0453(7)$ $0.0440(7)$ $0.0451(7)$ $0.0446(7)$ $0.0493(8)$ $0.0363(7)$ $0.0497(7)$ $0.0504(8)$ $0.0342(6)$ $0.0468(7)$ $0.0439(7)$ $0.0347(6)$ $0.0389(6)$ $0.0481(8)$ $0.0339(6)$ $0.0426(7)$ $0.0521(9)$ $0.0552(9)$ $0.0545(8)$ $0.0659(10)$ $0.0342(7)$ $0.0616(9)$ $0.0760(14)$ $0.0372(8)$ $0.0728(13)$ $0.0759(11)$ $0.0386(8)$ $0.0776(11)$ | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ $0.0577(2)$ $0.0544(2)$ $0.0691(3)$ $0.0166(2)$ $0.0486(6)$ $0.0350(6)$ $0.0475(6)$ $0.0156(5)$ $0.0476(8)$ $0.0392(7)$ $0.0458(7)$ $0.0084(6)$ $0.0759(11)$ $0.0386(8)$ $0.0776(11)$ $0.0143(8)$ $0.0760(14)$ $0.0372(8)$ $0.0728(13)$ $0.0214(9)$ $0.0659(10)$ $0.0342(7)$ $0.0616(9)$ $0.0190(7)$ $0.0506(8)$ $0.0340(7)$ $0.0432(7)$ $0.0125(6)$ $0.0474(7)$ $0.0338(6)$ $0.0402(6)$ $0.0132(5)$ $0.0517(8)$ $0.0407(7)$ $0.0453(7)$ $0.0181(6)$ $0.0493(8)$ $0.0363(7)$ $0.0497(7)$ $0.0093(6)$ $0.0504(8)$ $0.0342(6)$ $0.0488(7)$ $0.0147(6)$ $0.0439(7)$ $0.0347(6)$ $0.0389(6)$ $0.0132(5)$ $0.0481(8)$ $0.0339(6)$ $0.0426(7)$ $0.0119(6)$ $0.0521(9)$ $0.0552(9)$ $0.0545(8)$ $0.0109(7)$ $0.0659(10)$ $0.0342(7)$ $0.0616(9)$ $0.0190(7)$ $0.0750(14)$ $0.0372(8)$ $0.0728(13)$ $0.0214(9)$ $0.0759(11)$ $0.0386(8)$ $0.0776(11)$ $0.0143(8)$ | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ $U^{13}$ 0.0577 (2)0.0544 (2)0.0691 (3)0.0166 (2)0.0349 (2)0.0486 (6)0.0350 (6)0.0475 (6)0.0156 (5)0.0246 (5)0.0476 (8)0.0392 (7)0.0458 (7)0.0084 (6)0.0155 (6)0.0759 (11)0.0386 (8)0.0776 (11)0.0143 (8)0.0367 (9)0.0760 (14)0.0372 (8)0.0728 (13)0.0214 (9)0.0301 (11)0.0659 (10)0.0342 (7)0.0616 (9)0.0190 (7)0.0300 (8)0.0506 (8)0.0340 (7)0.0432 (7)0.0125 (6)0.0184 (6)0.0474 (7)0.0338 (6)0.0402 (6)0.0132 (5)0.0179 (6)0.0517 (8)0.0407 (7)0.0453 (7)0.0181 (6)0.0239 (6)0.0440 (7)0.0451 (7)0.0497 (7)0.0093 (6)0.0188 (6)0.0504 (8)0.0342 (6)0.0426 (7)0.0147 (6)0.0206 (6)0.0439 (7)0.0347 (6)0.0389 (6)0.0132 (5)0.0167 (5)0.0481 (8)0.0339 (6)0.0426 (7)0.0119 (6)0.0174 (6)0.0521 (9)0.0552 (9)0.0545 (8)0.0190 (7)0.0256 (7)0.0659 (10)0.0342 (7)0.0616 (9)0.0190 (7)0.0300 (8)0.0760 (14)0.0372 (8)0.0728 (13)0.0214 (9)0.0301 (11)0.0759 (11)0.0386 (8)0.0776 (11)0.0143 (8)0.0367 (9) |

Geometric parameters (Å, °)

| S1—C1   | 1.643 (2)  | C7—C8    | 1.374 (2) |
|---------|------------|----------|-----------|
| N9—C8A  | 1.359 (2)  | C8—C8A   | 1.398 (3) |
| N9—C9A  | 1.380 (2)  | C2A—H2A  | 0.9700    |
| N9—H9   | 0.86 (2)   | C2A—H2B  | 0.9700    |
| C1—C9A  | 1.420 (3)  | C2B—H2C  | 0.9700    |
| C1—C2B  | 1.519 (3)  | C2B—H2D  | 0.9700    |
| C1—C2A  | 1.519 (3)  | СЗА—НЗА  | 0.9700    |
| C2A—C3A | 1.508 (4)  | СЗА—НЗВ  | 0.9700    |
| C2B—C3B | 1.446 (15) | СЗВ—НЗС  | 0.9700    |
| C3A—C4A | 1.520 (3)  | C3B—H3D  | 0.9700    |
| C3B—C4B | 1.463 (15) | C4A—H4A  | 0.9700    |
| C4A—C4C | 1.498 (3)  | C4A—H4B  | 0.9700    |
| C4B—C4C | 1.498 (3)  | C4B—H4D  | 0.9700    |
| C4C—C4D | 1.415 (3)  | C4B—H4C  | 0.9700    |
| C4C—C9A | 1.389 (3)  | С5—Н5    | 0.9300    |
| C4D—C5  | 1.406 (3)  | С7—Н7    | 0.9300    |
| C4DC8A  | 1.422 (2)  | С8—Н8    | 0.9300    |
| C5—C6   | 1.376 (3)  | C16—H16C | 0.9600    |
| C6—C16  | 1.507 (3)  | C16—H16A | 0.9600    |
| С6—С7   | 1.419 (2)  | C16—H16B | 0.9600    |
|         |            |          |           |

| C8A—N9—C9A     | 108.73 (13)  | H2A—C2A—H2B    | 108.00       |
|----------------|--------------|----------------|--------------|
| C8A—N9—H9      | 127.5 (19)   | C1—C2B—H2C     | 108.00       |
| C9A—N9—H9      | 123.4 (19)   | C1—C2B—H2D     | 108.00       |
| S1—C1—C2B      | 121.48 (16)  | C3B—C2B—H2C    | 108.00       |
| C2A—C1—C9A     | 114.66 (17)  | C3B—C2B—H2D    | 108.00       |
| C2B-C1-C9A     | 114.66 (17)  | H2C—C2B—H2D    | 107.00       |
| S1—C1—C2A      | 121.48 (16)  | С2А—С3А—Н3В    | 109.00       |
| S1—C1—C9A      | 123.85 (14)  | С4А—С3А—Н3А    | 109.00       |
| C1—C2A—C3A     | 114.80 (19)  | С2А—С3А—НЗА    | 109.00       |
| C1—C2B—C3B     | 118.3 (6)    | НЗА—СЗА—НЗВ    | 108.00       |
| C2A—C3A—C4A    | 113.5 (2)    | С4А—С3А—Н3В    | 109.00       |
| C2B—C3B—C4B    | 121.0 (10)   | C2B—C3B—H3D    | 107.00       |
| C3A—C4A—C4C    | 109.36 (17)  | С2В—С3В—Н3С    | 107.00       |
| C3B—C4B—C4C    | 112.2 (6)    | C4B—C3B—H3D    | 107.00       |
| C4B—C4C—C9A    | 122.29 (17)  | H3C—C3B—H3D    | 107.00       |
| C4B—C4C—C4D    | 130.69 (18)  | C4B—C3B—H3C    | 107.00       |
| C4A—C4C—C4D    | 130.69 (18)  | C3A—C4A—H4A    | 110.00       |
| C4A—C4C—C9A    | 122.29 (17)  | C3A—C4A—H4B    | 110.00       |
| C4D—C4C—C9A    | 107.01 (15)  | H4A—C4A—H4B    | 108.00       |
| C4C—C4D—C5     | 134.04 (17)  | C4C—C4A—H4A    | 110.00       |
| C4C—C4D—C8A    | 106.52 (14)  | C4C—C4A—H4B    | 110.00       |
| C5—C4D—C8A     | 119.43 (16)  | C4C—C4B—H4D    | 109.00       |
| C4D—C5—C6      | 120.16 (17)  | H4C—C4B—H4D    | 108.00       |
| C7—C6—C16      | 119.78 (17)  | C3B—C4B—H4C    | 109.00       |
| C5—C6—C16      | 121.41 (16)  | C3B—C4B—H4D    | 109.00       |
| C5—C6—C7       | 118.81 (16)  | C4C—C4B—H4C    | 109.00       |
| C6—C7—C8       | 123.03 (17)  | C4D—C5—H5      | 120.00       |
| C7—C8—C8A      | 117.67 (15)  | С6—С5—Н5       | 120.00       |
| N9—C8A—C4D     | 108.52 (15)  | С6—С7—Н7       | 119.00       |
| N9—C8A—C8      | 130.59 (15)  | С8—С7—Н7       | 118.00       |
| C4D—C8A—C8     | 120.89 (14)  | С7—С8—Н8       | 121.00       |
| N9—C9A—C4C     | 109.22 (15)  | C8A—C8—H8      | 121.00       |
| C1—C9A—C4C     | 124.73 (17)  | C6—C16—H16A    | 109.00       |
| N9—C9A—C1      | 126.04 (15)  | C6—C16—H16B    | 109.00       |
| C1—C2A—H2A     | 109.00       | C6—C16—H16C    | 109.00       |
| C1—C2A—H2B     | 109.00       | H16A—C16—H16B  | 109.00       |
| C3A—C2A—H2A    | 109.00       | H16A—C16—H16C  | 109.00       |
| C3A—C2A—H2B    | 109.00       | H16B—C16—H16C  | 109.00       |
| C9A—N9—C8A—C4D | -1.01 (16)   | C4A—C4C—C9A—N9 | -179.30 (14) |
| C9A—N9—C8A—C8  | 179.17 (15)  | C4A—C4C—C9A—C1 | 0.7 (3)      |
| C8A—N9—C9A—C1  | -179.28 (15) | C4D—C4C—C9A—N9 | -0.11 (17)   |
| C8A—N9—C9A—C4C | 0.70 (17)    | C4D—C4C—C9A—C1 | 179.87 (15)  |
| S1—C1—C2A—C3A  | 155.86 (17)  | C4C—C4D—C5—C6  | 178.74 (17)  |
| C9A—C1—C2A—C3A | -25.3 (3)    | C8A—C4D—C5—C6  | 0.4 (2)      |
| S1—C1—C9A—N9   | -1.7 (2)     | C4C—C4D—C8A—N9 | 0.93 (17)    |
| S1—C1—C9A—C4C  | 178.38 (13)  | C4C—C4D—C8A—C8 | -179.22 (14) |
| C2A—C1—C9A—N9  | 179.56 (16)  | C5—C4D—C8A—N9  | 179.65 (14)  |
| C2A—C1—C9A—C4C | -0.4 (2)     | C5—C4D—C8A—C8  | -0.5 (2)     |
| C1—C2A—C3A—C4A | 51.1 (3)     | C4D—C5—C6—C7   | -0.3 (2)     |

# supplementary materials

| C2A—C3A—C4A—C4C<br>C3A—C4A—C4C—C4D<br>C3A—C4A—C4C—C9A<br>C4A—C4C—C4D—C5<br>C4A—C4C—C4D—C8A<br>C9A—C4C—C4D—C5<br>C9A—C4C—C4D—C5 | -48.2 (2)<br>-155.34 (19)<br>23.7 (2)<br>0.2 (3)<br>178.61 (16)<br>-178.95 (17)<br>-0.50 (17) | C4D—C5—C6—C16<br>C5—C6—C7—C8<br>C16—C6—C7—C8<br>C6—C7—C8—C8A<br>C7—C8—C8A—N9<br>C7—C8—C8A—C4D |                           | -179.42 (15)<br>0.2 (2)<br>179.32 (15)<br>-0.2 (2)<br>-179.81 (15)<br>0.4 (2) |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|
| Hydrogen-bond geometry (Å, °)<br>D—H···A<br>N9—H9···S1 <sup>i</sup><br>Symmetry codes: (i) $-x+2, -y, -z$ .                    | <i>D</i> —Н<br>0.86 (2)                                                                       | H…A<br>2.77 (3)                                                                               | <i>D…A</i><br>3.4955 (15) | <i>D</i> —H… <i>A</i><br>143 (2)                                              |







Fig. 2